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Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing
colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the
harsh conditions of the desert, these organismsmustwithstand frequent desiccation–hydration cycles, combined
with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic
apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions.
Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for
dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the
phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides
better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second
mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The
accumulation of P700

+ not only prevents light-induced charge separation but also efficiently quenches excitation
energy.
These protection mechanisms employ existing components of the photosynthetic apparatus, forming two
distinct functionalmodes. Small changes in the structure of the thylakoidmembranes are sufficient for quenching
of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory
damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic
quantum efficiency.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Photosynthetic organisms in stronglyfluctuating environments such
as arid regions and intertidal zones often face desiccation (e.g., [1–4]).
During the process of desiccation, continued photosynthetic activity
may lead to the production of reactive oxygen species (ROS) and to
subsequent damage to the photosynthetic apparatus [5,6]. The ability
to copewith cycles of hydration and desiccation provides photosynthet-
ic organisms in arid regions with a significant advantage in harsh and
otherwise uninhabitable niches.
ironmental Sciences, Alexander
pus, The Hebrew University of
This challenge has beenmet by various species in the plant kingdom
which evolved unique mechanisms for coping with the extreme
conditions of the desert. In many desiccation tolerant vascular plants
antioxidant metabolism is increased during desiccation [1,2]. In
addition, photosynthetic activity is decreased or completely shut
down via morphological changes in leaves and cell walls or through
the accumulation of antioxidants and compatible solutes [1]. In lower
order photoautotrophs such as lichens and mosses it has been reported
that following desiccation, light energy is dissipated rather than
converted into electrochemical energy owing to the accumulation
of a quencher. The identity of the quencher has been proposed to be
P680+ [7,8] or P700+ [9] but the evidence remains indirect.

Desiccation tolerance is essential in deserts, which cover about 40%
of the earth's surface [10]. The harsh desert environment imposes on
its inhabitants minimal amounts of water, extreme temperatures and
high irradiance. Sand crust biological communities play an important
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role in stabilizing shifting sands and in preventing desertification, but
are extremely sensitive to stresses such as physical disturbance and
environmental changes [10–12]. The first colonizers of unstable desert
sands are often cyanobacteria. Once there, they contribute to the
stabilization of the sand and prevention of erosion. They produce large
amounts of extracellular polymeric substances (EPS) which serve as
a matrix for sand particles, assist in retention of moisture and
provide the soil with organic carbon, nitrogen and other bioavailable
compounds [12]. Such stabilization and fertilization of the sand allow
succession and finally colonization of arid regions by vascular
plants. Desert crust cyanobacteria serve as the foundation of entire
ecosystems [10,13] and are thus important agents in the prevention of
desertification.

In cyanobacteria excitation energy is captured by phycobilisome
(PBS) light harvesting complexes, which transfer energy to chlorophyll
a containing photosystems I (PSI) and II (PSII). The PBSs are attached to
the thylakoid membrane surface and are composed of pigmented
phycobiliproteins which harvest light and non-pigmented linker
proteins which contribute to the stability and to the structure of the
complex. In the cyanobacterial photosynthetic apparatus PBSs extend
the spectral range of light absorbed by reaction center (RC) chlorophylls
(Supplemental Fig. 2A) [14–16].

Our study focused on the photosynthetic apparatus of Leptolyngbya
sp. isolated from desert sand crusts in the Nizzana region in Israel.
These organisms were shown to be able to decrease photosynthesis to
zerowhen desiccated and regain activity immediately upon rehydration
[6,17–19]. In this paper we describe mechanisms that allow such
dynamic changes in excitation energy transfer and in photochemical
reactions. Thesemechanisms provide the necessary protection required
under natural environmental conditions of desiccation and intense
light.

2. Materials and methods

2.1. Preparation of cultures for measurements

Nizzana (N.W. Negev, Israel, 34° 23′ E; 30° 56′ N; elevation 190 m
a.s.l.) Leptolyngbya sp. cultures were incubated in YBG11 medium in
shaking flasks [20], at 30 °C and 60 μmol photons m−2 s−1 provided
byfluorescent lamps. Cells were homogenized and placed on nitrocellu-
losefilters as described in [17]. “Artificial crust”filterswere left to air dry
at room temperature for at least 2 h prior to spectroscopic measure-
ments. The minimal amount of time required for reaching the stable
desiccated state was 2 h. In hydrated samples, measurements were
either made prior to desiccation or following rehydration of the filter
with distilled water. The strain used here was originally referred to as
a Microcoleus sp. [18], however, further bioinformatics analyses
suggested that it is closer to Leptolyngbya sp. [18].

2.2. Spectroscopy

Fluorescence quantum yield (QY) and steady-state absorption
were measured using an absolute PL quantum yield spectrometer
(Quantaurus-QY — Hamamatsu photonics, Hamamatsu City, Japan).
The samples were placed inside the integrating sphere and illuminated
atwavelengths between 400–700 nmat 10 nm intervals. Both scattered
light and emission were collected through the entire visible spectrum.
An empty filter (wet/dry) was measured prior to sample measurement
as reference.

Fluorescence decay kinetics were measured using a time-correlated
single-photon-counting (TCSPC) approach with an Edinburgh Instru-
ment Lifetime Spectrometer (FLS920) equipped with a Fianium SC400
supercontinuum laser monochromatized at 620 nm. The emission
from the samplewas collected at a right angle, through a long-pass filter
and a monochromator to suppress the scattering from the excitation
source, and collected using a Hamamatsu H10720 high speed PMT.
Samples were excited at 620 nm, and detection was between 650–
710 nm [21,22]. Room temperature steady-state fluorescence was
measured using a Fluoromax3 spectrofluorometer (Jobin Yvon). Slow
P700 photo-oxidation kinetics were measured in vivo using a Joliot-
type spectrophotometer (JTS-10, Bio-Logic, Grenoble, France) as
previously described [23].

Time-resolved optical transients were monitored with a homebuilt
pump-probe spectrometer, previously described in [24]. The actinic
flash was provided by a SLOPO (Continuum, SLOPO green) pumped by
frequency doubled Nd-YAG Laser (Continuum, Surlite). The excitation
wavelength was 700 nm and the bandwidth of the actinic pulse was
~7 ns. The transients were probed between 427–530 nm by the output
of an Optical Parametric Oscillator (OPO), pumped by a frequency
tripled Nd-YAG laser (Continuum, Surelite). The excitation (pump)
flashes were fired with a frequency of 0.2 Hz, which allow the cellular
electron transfer chain to return to the dark-adapted condition between
flashes. Kinetic traces were acquired by scanning the pump-probe
sequence from short to long delays, followed by a reverse (long to
short) series and each pump-probe point was sampled twice [24].
Three to four of these sequences were averaged depending on the
signal-to-noise at a given wavelength.

EPR spectra were recorded at 15 K in whole cells using an ESR300D
X-band spectrometer (Bruker), using a TE102 resonator equippedwith a
front grid for sample illumination within the cavity. When illuminated,
a tungsten–halogen lamp (800 W) was used to illuminate the sample
within the cavity. White light was filtered. The temperature was
controlled with a helium cryostat (Oxford Instruments, UK) [25]. Cells
were recovered after thawing the EPR tubes and the chlorophyll
contents of the samples were measured and found to be unchanged
(2.1 ± 0.15 μg chl). For the chlorophyll measurement, we had to
sonicate the cells after suspending them in 1.5 ml of growth medium.

2.3. Thin-section transmission electron microscopy

Exponentially grown Leptolyngbya sp. cells were cryo-immobilized
in an HPM 010 high-pressure freezer (BAL-TEC AG, Lichtenstein),
freeze-substituted (Leica EM AFS, Vienna, Austria) in dry acetone
containing 2% glutaraldehyde and 0.1% tannic acid for 60 h at −90 °C,
and then slowly warmed up to 0 °C. Following acetone rinses, the
samples were incubated in 0.1% uranyl acetate and 1% OsO4 for 1 h at
room temperature. Samples were then washed with dry acetone,
infiltrated with increasing concentrations of epon over 6 days and
polymerized at 60 °C (the procedure is detailed in [26,27]). Sections
were cut using an Ultracut UCT microtome (Leica, Vienna, Austria)
and post-stained with 5% uranyl acetate in isobutanol-saturated
double-distilled water (DDW) and Reynold's lead citrate in isobutanol-
saturated DDW [26,27].

3. Results

Leptolyngbya sp. isolated from biological sand crusts near Nizzana
(NWNegev, Israel) is capable of transitioning quickly between desiccat-
ed and hydrated states. Measurements of P700 photo-oxidation indicate
that the photosynthetic apparatus shuts down completely in the
desiccated state and is able to regain full functionality within minutes
following re-hydration of the sample (Supplemental Fig. 1). In order
to protect the photosynthetic apparatus in the desiccated state certain
desiccation tolerant photosynthetic organisms reduce their effective
absorption cross-section, either by reorganizing pigments or by
accumulating photoprotective pigments (e.g., [19,28–30]). This is not
the case for Nizzana Leptolyngbya. Supplemental Fig. 2A shows
measurements of the absorption cross-section of desiccated andhydrat-
ed Leptolyngbya. The total absorption of both states is similar. In the
hydrated state, absorbed energy is distributed between photochemis-
try, heat and fluorescence [22]. In the desiccated state photochemistry
does not occur (Supplemental Fig. 1) [6,18,19,31] and the energy is
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distributed between heat and fluorescence. The quantum yield (QY)
of fluorescence was measured parallel to absorption (Supplemental
Fig. 2B). The integrated fluorescence QY in the desiccated state was
~⅓ of fluorescence QY in the hydrated state. Although the fluorescence
of the desiccated statewas substantial, heatmust account for the bulk of
energy dissipation in the absence of photochemistry. In our search for
protective mechanisms by which Negev desert Leptolyngbya dissipate
light energy and avoid photodamage in the desiccated state, we studied
changes occurring in both PBS antennae and RCs.

Characterization of fluorescence kinetics of desiccated Leptolyngbya
was performed using time-correlated single-photon counting
(Fig. 1A). Time-resolved fluorescence of the PBS antennae was mea-
sured following excitation at 620 nm (phycocyanin absorption peak).
The desiccated sample exhibited a significant decrease in fluorescence
life-times throughout the entire measured range. In addition, it appears
that fluorescence in desiccated Leptolyngbya has shifted to longer wave-
lengths, around 700 nm (Fig. 1A & B). Fluorescence emission at 700 nm
has not been associated with PBS or PS fluorescence [32]. In studies
exposing cyanobacteria to high light, shortening of PBS fluorescence
life-time was recorded, but a fluorescence emission band at 700 nm
wasnot reported (for a recent review see [33]). In steady statemeasure-
ments, the excitation spectrum of the 700 nm band indicates that PBSs
are the main absorbing pigments responsible for fluorescence at this
wavelength (Fig. 1B).

Photochemical responses were measured by pump-probe spectros-
copy (Fig. 2). To minimize the contribution of PBSs to the spectra, the
excitation wavelength was set to 700 nm allowing direct excitation of
Photosystem I [34,35]. In the hydrated state several transient features
developed following pump excitation. Bleaching at 433 nmand induced
absorption at 455nm, 10 ns after excitation, are characteristics of P700+

(arrows in Fig. 2A) [34,36]. Absorption changes in the 450–530 nm
range result from the electrochromic shift associated with carotenoids.
In the sub-μs time range, kinetic changes of the absorption profile in
this wavelength range are attributed to electron transfer from
phylloquinones to FeS clusters [37]. The lifetime of the bleaching at
433 nm, in the hundreds of μs time range (Fig. 2A and C), suggests
slow electron donation to P700+ , as commonly observed in cyanobacteria
[34,38–40]. Importantly, about a third of the initial absorption changes
remained 10 ms after the actinic flash demonstrating the initial light
induced radical pair has been stabilized by successive electron transfer
reactions. Consistent with this, a closer examination of the transient
absorption changes at various wavelengths (e.g., 433 nm and 485 nm,
Fig. 2C) shows that these kinetics vary with wavelength. This implies
that different processes, with different spectroscopic characteristics
and time constants, take place in the hydrated sample.

In the desiccated state, spectral features were observed at 433 nm,
485 nm and 520 nm (Fig. 2B). However, they differed from the light
induced absorption changes observed in the hydrated sample in at
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least two respects. Firstly, the peak at 450 nm, characteristic of P700+,
was not observed. Secondly, these absorption changes decayed with
similar kinetics throughout the entire spectrum (Fig. 2B and D),
suggesting that in this case a single process takes place. Based on the
absence of the spectroscopic signature of P700+ this process is unlikely
to be the evolution, as a function of time, of a radical pair state. Themost
straightforward hypothesis is that the light-induced absorption changes
reflect the decay of an excited state [41,42].

If no radical pair is formed in the desiccated sample, one expects the
dependence of the light-induced absorption changes upon excitation
energy to be significantly different. Whereas the formation of a radical
pair will be determined by the absorption cross section of the light-
harvesting pigments that transfer their excitation to the photochemical
trap, the formation of the excited state will depend on the absorption
cross section of the isolated excited pigments (in this case chlorophyll
since the excitation wavelength was 700 nm). We thus analyzed the
dependence of bleaching at 432 nm on excitation energies (Fig. 2E). In
the hydrated sample, the absorption changes detected at 10 ns
displayed two components: 1) A first component characterized by a
steep dependence upon energy (0–0.3 mJ range). 2) A second compo-
nent (0.3–7 mJ range), the amplitude of which increased with energy
but more sluggishly and did not reach saturation. The behavior of this
second component is typical of excited states which may form on any
pigment in the thylakoid membrane. In the desiccated sample, absorp-
tion changes detected at 10 ns display a non-saturable component. In
the hydrated sample, a light-induced absorption change persisted
100 μs after the flash and saturated in amplitude at energy levels
lower than 1 mJ. This component, which corresponds to the first
component observed steeply increasing when detecting at 10 ns, is
attributed to charge separation in the RC and is expected to saturate
once all RCs are excited. This component is completely absent from
the desiccated sample. In the hydrated sample, the occurrence of satura-
ble and non-saturable components indicates that two processes are at
work: charge separation that saturates at low energy and the non-
saturable formation of an excited state decay associated with energy
dissipation. The desiccated sample completely lacks the saturable
component displaying only the non-saturable one, showing that all of
the excitation energy is dissipated and that photochemistry does not
take place.

Further information on the function of PSI was obtained from
Electron Paramagnetic Resonance (EPR) spectroscopy (Fig. 2F). As
expected, in the hydrated state, illumination at 15 K induced the
photo-accumulation of P700+ . Saliently, in the desiccated sample, the
P700+ signal was observed before illumination. Subsequent illumination
showed that the P700+ signal intensity in the dark reached values near
its maximal extent. These results indicate that in a large portion of
PSIs, P700 remained stably oxidized in the desiccated state. It is impor-
tant to note that the absorption of P700+ is red shifted (820 nm, [43])
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making it a very efficient quencher, dissipating absorbed light energy in
the desiccated state, whereas in the hydrated state P700+ is quickly re-
reduced, to allow photochemical conversion of light energy.

TEM images point to structural differences between hydrated and
desiccated Leptolyngbya samples (Fig. 3). Hydrated samples appear to
be better organized and structured than desiccated samples. While
average distances between adjacent lumenal compartments (repeat
distance) did not change drastically, the distribution of these distances
in the desiccated samples was significantly wider. In many hydrated
samples we observed an organized rod antenna structure that was
missing from all of the desiccated samples (Fig. 3A & C). An additional
structural change observed in the desiccated samples is a substantial
(~50%) decrease in the lumenal width.

4. Discussion

In this paper we characterized protection mechanisms utilized by a
desert crust cyanobacterium. The Leptolyngbya sp. used in this study is
capable of surviving harsh desert conditions using existing components
of the photosynthetic apparatus. Altering the structure and function
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of specific components supports dissipation of energy rather than
conversion of energy to photochemistry.

In the antenna bed, the same complexes that are ordered in rods
to direct energy efficiently to the RCs in the hydrated state, are re-
ordered in the desiccated state (Fig. 3). The fluorescence life-time is
shortened and a new fluorescence band at 700 nm emerges (Fig. 2).
This is done without changing the absorption cross-section (Supple-
mental Fig. 2). These observations are incompatible with previously
published mechanisms for energy dissipation in cyanobacteria, where
shortening of the fluorescence decay lifetime occurred but a 700 nm
red-shifted component was not detected (reviewed in [33]). It is
interesting to compare these results with data we have recently
published on in vitro analyses of phycocyanin nanowires [21]. Strong
excitonic coupling in phycocyanin nanowires generated an energy
band structure with a gap that is red shifted compared to the spectra
of the individual component, shorter fluorescence decay life-times,
higher heat dissipation and energy transfer over large distances — due
to efficient energy transfer [21]. Some of these features resemble the
results obtained in the desiccated state.

We suggest that the desiccated organization of PBSs favors tight PBS
to PBS excitonic coupling over PBS to RC coupling. In thedesiccated state
this organization will provide two advantages: a) better dissipation of
antenna excitation due to the energetic stabilization of the system;
and b) a large part of the excitation energy will be transferred parallel
to the membrane plane instead of to the RCs [21]. Similar migration of
excitation energy to longer wavelengths was indicated in desiccated
mosses and chlorolichens [7–9]. However, in those cases the molecular
nature of the far red state has not been spectroscopically identified.

In addition to the protection provided by the PBS system, the activity
of the RCs is extensively modified. Electron transport is blocked by the
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presence of a stable P700+ . Beyond blocking electron transport, P700+

provides additional excitation energy quenching capacity. The mecha-
nism preventing the reduction of P700+ can be a direct result of the
constriction of the thylakoid lumen that may impede diffusion of
reduced plastocyanin from Cytochrome b6f to PSI [44,45]. There is
evidence to suggest that quenching of PSII by spillover to PSI serves as
a protective mechanism in chlorolichens as well [9].

Dissipation of energy via the stabilization of oxidized chlorophylls
may seem like a radical approach. However, these organisms live
under extreme conditions where they are exposed to very high light
intensities under which “standard” quenching mechanisms cannot
provide sufficient protection. The structural and the functional acclima-
tion identified in this work provides an easily reversible structural
alteration that allows desert crust cyanobacteria to transition safely
and efficiently between a fully functional hydrated state and a fully
protected desiccated state.
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